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ABSTRACT

The detailed development of the analyses which are the bases for the two-

stream axisymmetric base-pressure programs (TSABPP-1, 2) is presented.

For the "corresponding" inviscid flow field, these analyses include the Prandtl-

Meyer expansion, the oblique shock wave, the slip line, and the method of

cha racteristics. For the turbulent-mixing component, two-dimensional constant-

pressure mixing and its application to axisymmetric flows are considered.
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I. INTRODUCTION

The purpose of thi report is to present the detailed development of
the principal relationships ai solution techniques which are the bases for the
two-stream axisymmetric base-pressure programs (TSABPP-1, 2). While the
intent here is to inform the interested program user about these specific pro-
grams, it should also be noted that various subsections of these programs are

kmore general, and as such, can serve as basic building blocks in the analysis
of other problems. Although an attempt has been made to make this report
complete in itself, it is intended and should be considered as supplemental to
the technical reports [1, 2] documenting the computer programs,

A uniform notation has been maintained through the reports and the com-
puter programs; since comprehensive lists of symbols are included in the abovc-
referenced technical reports, they are not repeated here.

2. DISCUSSION

In the development of the base-pressure programs, the analyses and
the resulting programs were subdivided into three major parts. The first part
was the calculation of the "corresponding" inviscid flow field; the second part
was the calculation of the mixing component; and the third part was the overall
organization of the former calculation sequences into a master program for
determining by iteration the base-pressure and base-temperature solutions.
This note is not concerned with the latter part, since it is discussed in detail
in [1], but rather with the former parts.

The inviscid flow-field analysis consists of the calculation of the
supersonic external (free stream) and the internal (nozzle) flows by the method
of characteristics. The external flow is over a solid afterbody followed by a
constant-pressure boundary region. The internal flow is assumed to be from
either an ideal conical or uniform flow nozzle discharging into a region at con-
stant pressure. The supersonic external and internal flows interact at their
impingement point, if it exists, to form an oblique shock system and a slip line.
The component flow-field analyses are discussed in Appendixes A and B.

The mass entrainment and energy transport rates, due to the turbulent
mixing regions formed between the fluid in the wake region and the internal and

*external streams, are estimated by locally superimposing the two-dimensional
constant-pressure turbulent-mixing model at the impingement point of the "cor-

Y responding" inviscid streams. The mixing analysis and the "corresponding
inviscid flow-field analyses are then related by the recompression criteria and
the requirement of conservation of mass and energy: in the wake region. These

I
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Appendix A

MISCELLANEOUS GAS DYNAMICS FUNCTIONS

1. Prandtl-Meyer Expansion (EMSPM)

The flow propertics before and after a centered Prandtl-Meyer

expansion (Figure A-i) arg related through the following expression [:3]:

A/ , /j IN (A-i)2 Max) Max~

where the turning angle, 6, is defined as

(5 2 ( 0a ""0 ) (A-2)

for left- or right-running waves. The w N(1I*r-.l, function is defined by

ax max tai *F 2 - M,

max 2j21 '1 M~2
W ~ ~ ~ ~ a (AiJJ ' axtl l*2 W

I where corrcsponding to M - * , M': - M ,

{ 
:<  = [(y, + i)/(y -1 )] 2 (A -4)

max

i ~The usual problem to be solved is with values of [M,6,y] specified, to

!i find from equations (A-i) and (A-3) the solution value of M . The numerical
~solution of these equations can be easily and quickly accomplished as follows.

tan- Aax)l max)M 2 [ 2aiia

[and correspondingly, the solution value of lP must be initially in the range

(c maxJ
0 , + 1) / 0 (7 jA-4)

1 2 ma

M2 m.

I
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P M EXPANS10#

M1  -..- ..

M2 (Mi

Pp

[M ;

FI(GURE A-I. PRANDTL-MEYER EXPANSION NOTATION

For small turning angles, oblique shock waves can be approximated by
"reversible compressions"; the initial solution range for those cases is:

0 (A-7)Ow (4 m, ' ax

and i I
I A1 2 M I (A-8)

For either an expansion or an admissible "reversible compression," rapid
convergence to the solution value of M* is achieved by a process of interval
halving and, at the same time, successive reduction of the possible solution
interval. The solution is always bounded on the negative or positive side relative
to the sign of the difference -

If d(1 "'(n-1), = )In (n) n)
if o, < 0,is replaced by MN " and M*" -  )  On the other

hand, if d 01) > 0, Al is replaced by MV' (n) and M*(n - l ) = M" ( n ). This

process is continued until the solution is isolated within a calculated interval;

i.e., the sign of d~" } has changed at least once. Convergence to the final

4i
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solution is then achieved by interpolation and a continuing, reduction of the solu-
tion interval as before; the solution procedure is illustrated for an expansion ill
Figure A-2.

P(2) (1( M X [U x ]

I (3)

S(n) ____2'__ SOLUTIO

(3 _ (2)

ax

p 11

INTERVA

%(23) m ;(2

INTER~POLATION

L P M

FIGURE A-2. SOLUTION PROCEDURE FOR A PIz-NDTL-M1CYLf
EXPANSION

The solution criteria are specified as

andl/or

tTypically for c, (2 IU0, 4 < ii < (3 iterations are required.



I,
1F () t2  5

where dta) is the current value of the difference function and 1()N ' M ( n ) /

are the current bounds o the solution Mi . r

2. Oblique Shock Wave (P1SI1K)

The general flow situation and notation associated with the analysis

of an oblique shock wave are shown in Figure A-3. The expression relating the

SHOCK

X X" P2

Y I//
FIGURE A-3. OBLIQUE SHOCK-WAVE NOTATION

oblique shock-wave angle (a), the approach Mach number (M 1) , the turning
angle (6), and the specific heat ratio of the gas (y) is given [4] as:

(sin2 ~ ) 3 + b(sin2" ) 2 + c(sia 2 a) + d = 0-

whe re )

b = -+ ' Sin2 5 (A-0

"Ts-pi cal f113, = f= 10-, 4 < n < 6 iterations are required.



MI I
r2MLM + I s)n ~ -j 26 (A-11)

-cosZ 6 ?
- (A- 12)

Equation (A-9) is simply a cubic equation in (sin2 U) whose solution is known.

The solutions to equation. (A-9) can be written as [5]:

Y(1) 2 -A 2(1-1) b (A-13)

where '1 1, 2, or 3 and the Y(1) are the three roots to the cubic equation for
(Bil 2 ar). The quantities ((P, A) are determined from.

A - (3c - b') (A- 14)

B -- [2b3 - 9bc + 27d] (A-15)

{[-B/21[-A3/27]2} (A-16)

For the values of Y t) tobe real, the values of (A,B) must satisfy the require-
ments that:

A < 0 (A-171'

and

[-B/21 - [-A3/27] y 2 (A-18)

If equations (A-16) and (A-17) are satisfied, the three roots, Y(I), will all be
real. The smallest root corresponds to a physically impossible process; the
next larger root correspinds to a weak oblique shock; and the largest root
rorresponds to a strong oblique shock.

After the weak-shock solution value of (sin2 o) has been four1 all other

pertinent dimensionless ratios for an oblique shock wave can be found
[4, equations 128 through 1491. Specifically, the static pressure ratio across
the shock is found from:

I7
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P2 = 2yM(sin2 U) - - (A-19)

P1  (+ 1)

3. Slip-Line Analysis (SLIP)

For an initial slip line solution range, assuming it exists, it is known
that (Figures A-4 and A-5)

02 < 0 s < 01 (A-20)

since

- 02- ~j62 - 61 (0 1 - 0 2) ,(A-2 1)62 =-(02 0 0

subtracting equations (A-21), the result is:

(61 - 62) = (01 - 8) = constant across the shock system. (A-22)

Let 0 (1) and 0 ( 1 ) bound the solution on the right and left, respectively. Initially,
2s

01is = 01

( since a2< 0s < 01 (A-23)

02S = 21

The solution range can possibly be narrowed for the P-0 characteristics (weak

solution) as shown in Figure A-5. Following this figure, let

0 M 6 > 0 (A-24)
62M)) i

where 6 are the maximum turning angles for the given y, and M. Now for

the solution range,

(1)
a) if 01Al > 02- set 02s = 0 1M

anci/or (I) (A-25)

b) if0 < 0 set0 1 ) = 0 2M

2Mis 28I
rI
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t

2' "Y2  SLIPLINE

=p

01 20

FIGURE A-4. SLIP LINE FLOW-FIELD CONFIGUIRATION

Ps= (P5/P)

7(2)

Nth VALUES
fOF SOLUTIONt )
I BOUNDS-) SIM 82M>o

.- SOLUTION 2

i, nlHTERVAL

01M 16 o2 INITIAL VALUES

*2 liM '

ti,) FIRST TRIAL

2s n) n I TRIAL

8[P- CURVES (1) AND (2) ARE FOR
GIVEN VALUES OF (M* y) AND (.t y 2 ]

"I I

FIGURE A-5. PRESSURE TURNING ANGLE CONFIGURATION

FOR SLIP IdNE PROBLEM
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Therefore, depending on the magnitudes of 01, 02, 0 1M 0 2M' the solu-

tion range is defined by

1M >v 2' 02s 1M 018 ]or (1 < < ()(A-26)

IM  2 0 0 2M, 2 i2MJ

(1) < (1)
For the possible solution range 0 2s < 0 does a solution exist?

if [ ') < 1Mand P~~< 2]'then a solution must exist in the range

02 < 0 < (1) Cases 1 and 2. Figure A-6, illustrate typical slip-line solu-
2s s is

tions and the determination of the initial solution range.

CSE I (2) CASE 2 (2)

P(1) P 2M

2a 2s

2 1W _ 6 1 2M 02 1 e  2M e1

V 2s "I 2" 1S

O L ' 1 0 N= -
i S O L U T I O N .Le L

RANGE RANGE

FIGURE A-6. SOLUTION EXAMPLES a

if P > P and/or Ps(1) > P no weak solution.exists for the given

2s 1 M i 2M'
conditions (Case 1, Figure A-7).

If 0IM > 02M - Nosolution (Case 2, Figure A-7).

If 02 > 0 M - Possible solution; needs further analysis (Cases 1, 2

in Figure A-6 and Case 1 in Figure A-7).

10
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L j.! CASE I - (2)

2(1) (0 )1
2s- , (1)--_

1 1.0
-0

L 2 s 1s

I °*1

CASE 2 (2)

)2 2MIM I0

FIGURE A-7. NO-SOLUTION EXAMPLES

I S
h. ifer the existence of a slip-line solution and the initial solution interval,

is have been established, convergence to the solution value of the
sf~3xeangle 0 can be rapidly achieved by a process of interval halving andI

Isuccessive reduction of the solution interval. The solution interval is reduced
according to the sign of the normalized difference in the pressure ratio
(Figure A-5),

d(n) [ (n) - (n)][. (~n) + (n)27

(n) (n-l) (n) (n) 0 (n-1 (n)

Id < 0, then 0~ is replaced by 0 and 02 0 Or Oifd > 0,

0 (n- 1) is replaced by 011n ) and 0 (n) 0 (n-I) This process is continued until
2s s is Is

I



r
I

the solution criterion

is satisfied. Typically for E 10-5, convergence is achieved for n < 10.

1
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Appendix B

METHOD OF CHARACTERISTICS

This appendix is based in part upon a previous report [6].I

1. Basic Equations

For steady. irrotational axisymmetric flow [3], the differential
equation for the complete velocity potential in terms of the cylindrical coor-
dinates (X, R) is

u2\ 21 uv D 2 ,b V2 a2,b 4I3' -0- + 1 -- +  = 0

where

C2= c2 Y - (u2+ v); V2 = (u2 + v 2) (B-2)

and

I = -, v = aR(B-3)

aX DR

The condition that the derivatives of:

D_ and Da X 3R

may be discontinuous along curves on the solution surface to equation (B-i)
D 2  4, a 2(b

jihich implies that -- -2  , and - are indeterminate along such

curves - the characteristic curves) yields the following:

a) The physical characteristics:

IdR\
tanl (0 a) (B-4)

13
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b) The hodograph characteristics: s

R cot a sin0 sin I (dR) , 11 (
1d11 - V ) 1,11 sin (0i ) R

The Family I (right-running) and Family li (left-ruaning) characteristics and

the applicable notation are shown in Figure B-i.

R
FAMILY 11

F AMILY I

=sin
"1  1

FIGURE B-1. PHYSICAL CHARACTERISTIC CURVES

Introduction of the velocity of sound at sonic conditions as a reference

[- . T]2 (B-6)

and I,:c = V/c (B-7)

into equation (B.-5), yields

(do) , 1 1 sin 0 sin (B-8)
1, 11 (M"tan ot) R sin (0 T -) ) , 0

14
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The problem of solving cquation (13 1/ subject to the imposed boundary

conditions then becomes equivalent to solving the set of simultaneous ordinary

differential equations (B-4) and (B-8) under the same conditions. Various "unit

processes" encountered in the numerical solution of equations (B-4) and (B-8)

will now be discussed.

2. Field Points (FPS)

For two known points (1) and (2), Figure B-2, on the Family I
and II characteristics, respectively, the location and flow variables at the

unknown point (3) at the intersection of these characteristics can be determined

by use of the characteristics relationships, equations (B-4) and (B-8).

R

>(3)

&3

'2

FIGURE B-2. GENERAL FIELD POINT

To a first approximation, the coordinates of point (3) are given in finite

difference form as

[(R 2 - RI) + X, tan (0 - cZ) 13 - X2 tan (0 + a)23 (1[tan (0 - a)3- tan (0 + cZ)3] (B-9)

tThe notation ( ) indicates that average values between the points (i)

and (3) are to be used.

15
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and
R3. III + (X3 - X,)tan (0 - a) 13  (B-10)

where [v + (-1)i a] i3 is defined as the average value of the quantity between the

points (i = 1,2) and (3). Correspondingly, the flow variables at (3) are given
by:V

03 1 L13( 1 + P231)- (M' - M1') 1 Q 13 (R 3 - RI) - Q 23 (R 3 - R2 )]

IN 6 2L P13 + VV 2)

(B-i)

and

M = [M: - P13 (03 - 0) + Q13 (R 3 - RI)] , (B-12)

where Q and P i = 1 or 2) are coefficients based on the average values

between the poin, (i) and (3). II
These coefficients are defined as:

P W MI:- tan a)i 3  (B-13)

and

Q i 13 sin 0 sin a 1B14
R sin [0 + (-1)U] 3

The values of [X, R, M';, 0 13 are determined initially by assuming that
the flow variables at point (3) are simply the average of those at points (1) and

(2) hence,

03 2 (1 + 0:)

Then by using equations (B-9) through (B-12) in sequential order, a first approxi-

mation to the values [X, R. M",0 13(1) can be determined. These values are

then used to determine the average quantities and subsequently the next approxi-

1



(2) .. .
mation [X, R, Mr, 0(,2 h this procedure of successive approximations is
repeated, values for the variables at point (3) for two successive approxima-

tions (n - 1) and (n) will be obtained; i.e.,

(n1-1) (n)
SX, R, 013 and IN, l, AR I'" L

If the problem areas discussed below are not encountered, the values calculated

by this procedure stabilize rapidly, and the iteration is terminated when

[LO(n) - 1 lj(n)~ 135

or

(n - 1 (n)1

Typically for values of c 1 , C2 = 10-4, the iteration stabilizes for 5 < n < 10.

Difficulties encountered in the course of this iterative procedure have
definite physical significance that can be traced to:

a) Either of the characteristics being oriented such that the quantity:

0 + (-1)' ,- 0 (3-17/)

or, in other words, a characteris'ic is horizontal in the flow field

for which

Qi3 ( "B-18)

b) Compressions developed in the flow field duc to wave coalescence
such that

1n )  . (B-19)

In the first case, the quantity

Q,3 (R3 R) (13-20)

must be reconsidered when

0 + (-1)ic - 0 (B-21)
i13

17
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The incremental length, A, along either characteristic is given by

.A! R3 - R i) (-2

sin[O , (-l)io a

1. i3
andas[ -) - - - ).Hence, the quantity in the !

characteristics equa:ions (B-11) and B-12) must then be replaced by the limit-
ing value of equation (B-20), i.e., I

QiWa(1' 3 - u.) - " i i ]a ](X 3 - x.) (B-23)f j
when I

[o + (-I) ic Ci 0 (B-24)

The second problem area usually results from "foldback" of the charac-
teristics network as a result of the coalescence of the same family waves. To I
treat thiL problem, provisions must be made in the overall flow-field claculation
sequence so that the shock formed in the flow field as a -result of this coalescence
can be treated and thus, "foldback" of the characteristics network avoided.

3. Axis Points (APS)

If any one of the points (1, 2, or 3) is located on the axis of sym-
metry, then,

R. 0. = 0 j = 1, 2, or 3 (B-25)

and the calculation procedure of section 2 is modified accordingly for the axisI
point calculations. No particular problems are encountered when these condi-
tions are imposed on the field-point calculation sequence since the term [ R-1]

only appears in the characteristic equations as an average value in the
coefficients Q i3"

The two axis point calculations encountered in the primary flow-field
analysis are shown in Figure B-3.

181



R

9~ M .

/ ((3) (1) 
0-

(R, 8) 0

i1 (3)

(2)(2

FIGURE B-3. AXIS POINTS

For the one case, the unknown point (3) is on the axis, and consequently,

R3 , 03 = 0 (B-26)

Then the remaining values [X, M'] 3 are found from:

)R2 (-27)X .3 X2  - an(0 + )23 ( - 7

M.C = M2- P 230 2 - Q23P 2  (B-28)

To start the calculation sequence, it is assumed that

Mil"= M2

Then a first approximation [X, M-1' 13  can be found from equations (B-27) and
(B-28). Using the successive approximation technique, the calculations are
continued until:

Mj (n) - (M)(n-1)]/M (n)

Thus the conditions at point (3) are determined as: [X, 0, MScl 0]3

19



In the other case, the known point (2) is on the axis where:

l2, 02 = 0

The calculation sequence for determining the values at point (R) are the same
as outlined for the field-point analysis (section 2).

4. Boundary Points

For the base-flow analysis, only two types of boundary-point calcu-
lations occur, viz., the constant-pressure condition for the separated flow
region and the solid boundary condition when an afterbody precedes the external

stream's separation point.

a. Constant Pressure Boundary Points (CPBS)

Along the boundary (Figure B-4) the condition of constant
pressure is expressed by:

= M = constant, (B-30)

where Mt is found from the isentropic flow function

F B constant. (B-31) i
0

RI

20 1 = CONSTANTS

X

FIGURE B-4. CONSTANT-PRESSURE BOUNDARY POINT

20
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A first approximation to the spatial location of the unknown point (3) is found
from the streamline condition, between points (2) to (3), where

(113 - R2) = (X3 - X,)tan03 (-32)

and along the I-characteristic, between points (1) to (3), where

(113 - 11) = (X3 - Xt)tau (0 - a) 3 (B-33)

Then X3 is found from:

"X [RI - R 2
+ X2 tan 023 -X 1 tan (0 - a)13] (B-b4)

[tan 02 3 - tan (0 - a) 13]

The local flow direction is L "n given by: t

-(M
-c - M{) - Q13 (R 3 - R1 )] (B-35)03 = 0t 3- B-5

P13

The calculation sequence is initialized by assuming that

031
03 ;(0j+ 02)

The corresponding values of X )R3 (1) , 03(J are then found from
equations (B-30), (B-34), (B-32), and (13-35). By use of these equations and
the current approximations to the variables at point (3) to evaluate the average-
value coefficients, the estimates for [X, R,0 ] 3 can be improved by successive
approximations until

(n) (n-1 )]/(n)-03 <

Thus the variables at point (3) are determined as [X,9RAJ 3  and M:

b. Solid-Boundary Points (BTBPS)

Along a solid boundary (Figure B-5) the flow must be tangent
to the surface, and therefore at any point (3) on the surface, the local flow

direction is given. by:

0(3 = il*(B-36)

1TQ is evaluated accordingtosection 2, equations (B-14) or (B-23).
21



RI
2

3

R (X3) 3

FIGURE B3-5. SOLID-BOUNDARY POINT J
The solid-boundary profile is assumed to be described in the meridional plane
by a functional relationship of the form

R = R (x) (B-37)

However, before the streamline condition specified by equation (B-36) can be

applied, an initial estimate of the location of the unknown point (3) on the solid-
boundary must be made. By assuming that the location and flow properties are
known at a point (1) in the adjacent flow field and a point (2) on the solid-

boundary, initial estimates of the flow properties at point (3) are

0 3 = (0 1+ 0 2) (B-38)

A13' (M + M ) (B-39)

The approximate location of point. (3) on the solid boundary is then found by
solving simultaneously the physical I-characteristic relationship between

points (1) and (3) and the equation specifying the boundary profile. The rela-

tionships to be solved are:

22
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tI
C (R 3 - R) (X 3 - X1 )tan (0 -a)13 (B-40)

and

$ when R. R. and X. X3 . Carrying out this simultaneous solution and using

equation (B-36) results in an approximate set of values for
i

]3(I)
[X,R,O1 3

By use of these data along with the hodograph I-characteristic relationship
between points (1) and (3), the local value of M ' can be estimated from

M " - P13 (03 - 0 1) + PROD13  (B-41)

where for 1(0 - a) 13 1 > 0 (cf. Field Point discussion),

PROD13 = Q13 (R3 - R) , (B-42)

orfor I( - a)l 0sn

POD13 = sin i (X3 - X1) (B-43)
113

Thus, the location and flow properties at point (3) for this first approximation
are determined as:

th
For the next and all successive approximations, the (n - 1) estimates

of [M*', ] -  are used with equations (B-40), (B-37), and (B-41) through

th (n)
(B-43) to determine the n estimates of IX, R, M'-1, 0 13 . This procedure is
repeated until the normalized difference in M ' satisfies the convergence
criterion:

EIM,(n) - M ,(n-l/M , (a) < (B-45)
t IM

For E 10-4, equation (B-45) is typically satisfied for 5 < n < 10.
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Thus when equation (B-45) is satisfied, the final values of

are determined.

5. Flow-Field Analysis (ACPBS)

The unit processes described above are organized into a sequential
program which can be used to calculate the flow field subject to the imposed
boundary conditions. This organization is principally one of "bookkeeping" and
is normally not difficult. The basic sequence can take any of several different
forms; the preference here has been to calculate along Family I characteristics
toward the boundary.

a. Calculation Sequence

The boundary conditions imposed on the flow-field calculation
(Figures B-6 through B-9) are:

1) The flow variables are specified along the initial internal

(nozzle) flow or external (free stream) flow characteristic.

2) The conditions along the boundary are specified for the
particular type of boundary condition that is being considered.

These data along with the surface geometry, if applicable, are sufficient to deter-
mine the flow field.

At the nozzle corner R 1 i)a centered expansion (or compression),

can occur as a result of the need for the internal flow to expand (or compress)
at the nozzle exit to satisfy the imposed constant-pressure boundary condition.
A similar situation can also occur for the external (free stream) flow as a result
of expansion (or compression) corners and a solid-boundary preceding the
separation point of the external stream as well as the requirement that the exter-
nal flow must adjust to the pressure level maintained downstream of the separa-
tion point. The general flow-field calculation sequence selected here for Ather -

the internal or external flow-field proceeds from the initial Family II cha'ac-

teristic (nozzle or afterbody) along I-characteristics to the boundary.

The calculation sequence for internal flow and external flow are illustrated
in Figures B-6 and B-7, respectively. I
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INITIAL 1i-CHARACTERISTIC

i ,R

NOZZLE \ .

A \(2) (3)

CENTERED
EXPANSION (2) (3

AT (X I

FIELD POINT B
BOUNDARY

BOUNDARY

POINT

FIGURE D-6. FLOW-FIELD ANALYSIS

b. Wave Coalescence

The Family II characteristics from the internal constant-
pressure boundary tend to steepen as the calculations proceed in the downstream
direction. These characteristics eventually coalesce and form a shock wave
within the flow field. This condition is detected by the crossing of waves of the

same family thus giving rise to the "foldback" of the characteristics network.
Although flow-field calculations where "foldback" occurs still yield results
which are in reasonable agreement with experiment [7], the flow-field calcula-
tions must invariably be terminated as a result of errors directly attributable
to the unrealistic characteristic network that develops.

An exact treatment of this problem han been given 18], as well as an
approximate treatment [9]. However, since tke calculated boundary is
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FIGURE B-9. MODIFICATION OF THE CALCULATION SEQUENCE
FORTRAMTIG WAVl' COA LESCENCE
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I!
relatively insensitive to the method U"-0f Lo treat the coalescence problem, a
simplified approach will be described here which is in excellent agreement with
previous reports [S, 9].

In reference to Figure 13-s, wave coalescence has occurred within the
flow field. Allowing a single "foldback" at this point, the conditions on the
"upstream" and "downstream" sides of the. coalescence point are determined by

linear interpolation between the points (2) and (3) and the points (2)' and (3)',
respectively. The "foldback" points (3) and (3)' are then dropped and the flow-
field calculations are continued by using the flow variables determined at the 4

wave-coalescent point, Figure B-9.

In actuality, the oblique shock wave formed in the flow field due to the
wave coalescence propagates dcwnstream where it becomes curved as a result
of the continuous interaction between the shock and the waves in the flow field.
As a consequence, the flow is rotational downstream of the internal shock wave.

In the approximation described above, the flow is assumed to remain irrotational.
This assumption yields, in most cases, results which are acceptable and consis-
tent with the overall analysis.

6. Initial Nozzle Characteristic

The nozzle geometries are restricted to those configurations which
produce son~ic, uniform, or conical supersonic flow. The objective is to deter-

mine the flow variables along the initial nozzle characteristic for each
configuration.

a. Sonic Nozzle

The sonic nozzle can be treated approximately as a nozzle which
produces uniform flow at the nozzle exit that is slightly supersonic, e.g.,
"N 1 1.01. o

b. Uniform Supersonic Nozzle (UFLOC)

i For uniform supersonic flow at the nozzle exit (Figutre B-10),

the initial I-characteristic is straight and the flow variables are known as
I'._II tl= 0] along this characteristic.

The case where an initial compression must exist at the nozzle exit to
satisfy the imposed bounidary condition will be considered, in an approximate
way, in the subsection to follow, "A Compression at the Nozzle Exit."
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R

NONCHARACTERISTIC CURVE (0 0, A* M10?

* a= sin
- I ( M

' , tINITtAL II CUARACTERISTIC

Z(Xi, RIO)

FIGURE B-10. UNIFORM SUPERSONIC FLOW NOZZLE

c. Conical Supersonic Nozzle (CNFLOC)

The flow in an ideal conical nozzle (Figure B-I1) can be
specified as being at a uniform Mach number (Or along the zone of the

spherical secter that coincides with the nozzle. The initial I-characteristic can
be determined exactly 110] or numerically from the flow conditions specified
on the non-characteristic spherical surface.

R can* MONCHARACTERISTIC CURVE

(AXIS)

INITIAL 11-CHARACTERISTIC

(X11 R)

FIGURE B-11. CONICAL SUPERSONIC FLOW NOZZLE

i 

The numerical 
approach 

while 
yielding 

values 
for the initial 

:

i-characteristic that are in excellent agreement with previous exact theoretical
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reisults 1101 has the Ldvantage of being easily extended to treat approximately 1
the pr,4)ni of an initial oornpression at the nozzle exit (for both the uniform
and conical nozzles)

i'he flow conditions are specified along the non-characteristic curve
(Figure 11-12) as being at a uniform value of M* and that the velocity vector is

always perpendicular to this curve. Any point on this curve is defined by
11 l l where () 2 o -01 and

~X,.Mju]X= X +1 It oO-cs) (D-46)
11 cone 1110co

R =R sint 0 (B-47)
cone

wiwre~

it = R1 1/sin 0 (B-48)

NONrCHiARACTERISTIC CURVE (MC)
(AXIS)

(X, R) HC INITIAL 11-CHARACTERISTIC

S(X 11. R 11)

FIGURE 13-12. CiIARACTERISTICS NETWORK FOR NUMERICAL
CALCUIlATION OF THE INITIAL II-CIL'\RACTERISTICS
FOR A CONICAL NOZZLE

Thei norsoning locteinsti thre is then subdivided and a characteristics
nutork(Fi-ur B-2) -anbe sedtodetermine Ilumeri1 2ally the flow variables

,1111('0'ILlponin loaton (i te i~talconical nozzle characteristic.

ThisL~ccra caculaionseqenc isuseful since the calculations are
wad frm anonchaactrisic urv tothe corresponding characteristic curve.I-0



d. A Compression at the Nozzle Exit

If the boundary conditions are such that the nozzle discharges
into a region at a pressure greater than the supersonic design pressure, an
oblique shock wave is generated in the primary flow field. If this compression
is assumed to be relatively weak, the oblique shock can be treated approxi-
mately as a reversible compression. For either the uniform or conical nozzle,
the flow variables on the noncharacteristic curve and the imposed boundary
conditions are used to establish a single reversible compression wave at the
nozzle exit location (X 1 ' R 1 1 ) which satisfies the boundary conditions. With

these data, the remainder 6f the initial I-characteristic can be established
using the calculation sequence from the non-characteristic curve to the corres-!
ponding characteristic curve (Figure B-13),

. . AXISii
\ '*-IICHARACTERISTIC

(COMPRESSION)

P i II-CHARACTERISTIC
/ (DESIGN)

(X1  8*

PB> P1I

FIGURE B-13. APPROXIMATE ANALYSIS OF A COMPRESSION
AT THE NOZZLE EXlT

7. Afterbody Analysis (ABTS)

.rhe afterbody analysis utilizes the unit processes described in
section 4; this analysis must, however, be consistent with the flow-field analysis
of section 5a (Figure B-7). In addition to determining the detailed flow condi-
tions over the afterbody, the final Family II-characteristic originating at the
terminus of the afcerbody must be determined so that the same flow-field calcu-
lation algorithm can be used for calculating both the external and internal flow

fields and constant-pressure boundaries.

31I
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I
a. Initial and Final Family II Characteristics

The approach flow to the afterbody is currently restricted to
uniform supersonic flow. For this case, the initial II-characteristic is a straight I
line along which the flow properties are constant and known at each arbitrarily

selected subdivision point; this situation is shown in Figure B-14.

E!

0E = 0 UE ai (i/ME) = CONSTANT

INITIAL Il-CHARACTERISTIC

(X 2E, R2E)j

(2E)

FIGURE B-14. INITIAL II-CItARACTERISTICS FOR UNIFORM
EXTERNAL SUPERSONIC FLOW

4
When an afterbody is present, the points along the final 1I-characteristic

originating at the afterbody terminus are determined as input data for the sub-
sequent constant-pressure boundary calculations. After the I-characteristi;.
originating at the initial Il-characteristic and passing through the terminus of

the body is found by iteration, the remainder of the points along the final

Il-characteristic arc found by continuing to subdivide the initial II-characteristic
and continuing the method of characteristics calculations to the final
l-characteristic (Figure B-15).

b. Specific Afterbody Profiles (BTCNST)

As discussed in section 4b ("Solid-Boundary Points"), a

simultaneous solution must be made between the equations describing the

:12



INITIAL 11-CHARACTERISTIC

THE LOCATION OF THIS
POINT IS FOUND BY ITERATION 7 . FINAL II.CIARACTERISTIC

S"'I-CHARACTERISTIC

E "THROUGH AFTERBODY

- 0 TERMINUSE
\/," /

Z(X 2 E' R2 E)

OR (XBTl, RBTI, -3T )  ( R

OR (XBT2' RBT 2 )

FIGURE B-15. DETERMINATION OF THE FINAL IT-CHARACTERISTIC

THROUGH THE AFTEEBODY TERMINUS

afterbody profile and the physical I-characteristic; this solution determines

points in the characteristic network which are located on the afterbody surface.

The purpose of this section is to summarize the resulting expressions

for three afterbody shapes - the ogive (circtlar segment), the parabola, and

the cone. A typical afterbody configuration and the associated notation are
given in Figure B-16; for each shape, the :,iL,.r:,ody is assumed to be completely

specified by the values of

EXBT V RBTl' OBT1jan [XBT2' RBT2I

The equations specifying the afterbody's meridional profile are sum-

marized in Table B-I. The constants IC 1 , C2 , C3 ] in the profile equations are

determined for each afterbody based on the values specified at points (BT1)

and (BT2). The resulting expressions for these constants are summarized in
Table B-II.
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46XTl. RBSTI)

TIp ( XsIR s) (XBT2' XBT2)

OGIVE, PARABOLIC, CONICAL

/:I oI ,, B Lc

FIGURE 13-16. GENERAL AFTERBODY NOTATION

TABLE B-I. EQUATIONS OF AFTERBODY MERIDIONAL-
PLANE PROFILES

Ogive R + 3 - X - C

Parabolic R = C+ c + C X2
s is

Conical R = C 1 + C 2 (X - C3)

The simultaneous solution of equations (B-37) and (B-40) has been
carried out for the profiles specified in Table B-i; the results of these solutions
are summarized in Table B-I1.

:34
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TABLE B-III. EXPRESSIONS FOR jX 3, R3, 03] FROM THE SIMULTANEOUS

SOLUTION OF EQUATIONS (B-37) AND (B-40) FOR VARIOUS
AFTER13ODY SHAPES

Shape Simultaneous Solution Values for [X3 , R3, 03]

Ogive X3= B -A

A = I + tan2 (0 - a) J
B = (RI - C)tan (6 - a)13 - 2C2 - 2X1 tan2 (0 - a) 13

C = C2 - C3+ [(R - C1) - XL tan (0 - a) 13 ] 2

R3 = I + (X3 - X1 )tan (0 - a) 3

0 = tan-I[ - X[) (

L (R - Ct)

Parabolic X3  B -[B2 
- 4AC]

2A

A =01

B = C2 - tan (0 - a) 1 3

C = C3- R1 + X, tan (0 - a)1 3

R3 R 1 + (X3 - X1)tan (0 - a)13

03 = ta- ' [C2 + 2C1 X3J

I =C - R 1 - C2C3 + X tan (0 - a) 13 1[tan (0 - a 13- C21

R3  R1 + (X3 - X1)tan (0 - a)j

03= tan -1 (2) = constant
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Appendix C

MIXING ANALYSIS: TWO-DIMENSIONAL
CONSTAN T-PRESSURE TURBULENT MIXING

The general references for Appendixes C and D, although not cited, are
several by Korst et al. [ 11-16].

1. Two-Dimensional Constant-Pressure Mixing Begion

The two-dimensional mixing region control volume is shown in
Figure C-1.

For constant-pressure mixing with:

a) uniform flow at x = 0

b) fully developed flow at x, the velocity profile within the mixing zone
is given by

y U 2Y y €_u 1 i
SP = - 2[1+ erf 7]

YR- a where

,- X in which

0 - -STREAMLINE

T -  X (x,y) refer to thc intrinsic

coordinate system
R CONTROL VOLUMESC VRbj- - a= similarity parameter

X b[u= 12+2.76 M

FIGURE C-1. TWO-DIMENSIONAL MIXING

REGION CONTROL VOLUME

2. Determination of y

The intrinsic coordinate system is located relative to the reference

coordinates by applying the momentum equation in the x-direction (per unit
width) to the control volume of Figure C-1. The result is:
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II
-PaU a2YRA f pu'dY 0 (C-1)

YRb

but

y y (X) + Y

x X

NOTES:
x

(a) J, PVbUbdX = 0

since Ub = 0 at Y

(b) At YIa the flow is undisturbed, and

(c) continuity equation applied to the control volume adds nothing.

Then
Then (Ym+YRa)

-pU2 Y +
-a a ya m y R) pu'dy =0 (C-2)

a a Ra frm+Y Rb

Non-diniensiornalizing with (Pa U)

71 ra+ "/Ra

"R fP 
2d-q 0 ,(C-3)

77m+ Rb a

where

y
71

=  C
x

U

U
a1)8



Now at and gRb'

for 7 >- ra (C-4)

IT -T 1< ra
ca 0

01 < cb' I for 7 Rb (C-5)IT - T 1< "b

TB -T0 1 <

Therefore, equation (C-3) can be rearranged as

Ra ( ) a 
d f P f2dil 0 (C-6)

Thus

Ra

-"Ra,+ f " $d n o (C-7)

and consequently,

RbRa
f ed . (C-8)

3. Identification of j-streamline

Application of the continuity equation to the jet flow yields

YRa

-PaUaYR + f pudY 0 . (C-9)
Y.

J

In non-dimensional form, equation (C-9) becomes:
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771 +

U a

11

-i-' Ra+ 'I n

--"--- IJ pdJ" -- --- di~=0 (C-lO)

r) . a aa+ r a

or

T apJ. 7,74d ,= , -~ (0-12)

and combining equations (C-9) and (C-12), the integral equatioi: be solved for
1 is

'Ia 'IRa
J a d j' P $di• (C-13)

i; . %baP

4. Energy Considerations

By use of Crocco's Integral Solution for an apparent unity turbulent

Prandtl number, the stagnation temperature distribution in the mixing region

is given by

T 2
T = A + Bt (C-14)

oa

T T
T T

oa oa
(C-15)

T
T0

oa
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T
A B

T
oa

T
1=---

T
oa

A T T + " T-)

oa oa oa

or

A = A B + (i - AB)i (C-17)

where

TB

A - (C-18)B T-
oa

a. Energy Transferred Across j-Streamline

Shear work and conduction per unit width is

.yf PC p(Toa -T)u dy ejC-~
yj

In dimensionless form,

xp CTJ =(1- A) p d , (C-20)
X Pa a p oa 71i a

since

(I -A) t-o for ala < q < (?Ra + 71.)4

equation (C-20) can be simplified as:
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x 1 'VCT 9 (-A)~ 4)d

P a Pa1

ed . -) - A

pp p
)1,, a. ) a I.a

a '01 'a y 'I a

q. I' a~

(p(Tp p ?+[ ,,p+A,1~
aj

~Ra

Iw a . t.



Also frrom equation (C-13),

"Ila d -Rdfa

a Pa ;. a

Therefore,

f PIt f )¢ '
J aL-)d 7. P 2

and continuing the simplification, the dimensionless energy transfer ratebecomes:

f 02d-Af
apaoa 71Rba1i a

f - AB

From equation (C-1

A AAB + (I - A.) 0o [(1 - (A

hence, equation (C-21) can be expressed as:

f, (A(f A,) paC-22)

443
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b. g (,Thvectcd with Mass Between (B and (d) Streamlines
(with Reference to Zero Temperature) per Unit Width

'rihe energy convected is:
' Yd--

ed = J pC uT 0 dy (C-23)

e d7

!Nrin (IjnsnhSj~~es form IC:ao ma

xpCUf AJ -Pdia. P p a oa -,. p

.. _ajid inally expaniding the integral

O? 
pd a Apdij + Aod,. (C-24). x p C" V T d, Pa- P

!, q.b * , thvii

6N A- -d Y

awd the last inegral in euation (C-24) can be expressed as:

P Ajd 1 = - P AOdX

7. a T a

since ~ +~x

+I >0 for 7<X7j

4* 41
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and

A > 0,

Pa

Therefore, the dimrensionless convected energy transfer rate is given by-

a d f IL A4dd - (C-25)
x p CUT p +A4jdu

a~aoa a ba

The total rate of energy transfer per uniit width to the wake is found by
combining equations (C-21) and (C-25). The result in dinmensionless form is

L* e -- U (e + e(C--26)
x p CUT xpC UT j d

a p a ca a pT a/

C~~ T f AAOji; (C-27)pa p a oa "Rba 7 m a

5. Mass Transfer

Mass rate convecked between (j) and (d) streamlines per imit with
width is

gd J im dy ,(C-28)
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or in dimensionless form

(I I9
dd d7 f q@d i (C-29)

aa Rb Rb

Equations (('-1:1), (C-27), and (C-29) define results for mixing analysis after

p -and are determined.
Pa

6. Constant- Pressre Mixing

For an ideal gas, the equation of state is

P = pUIRT

then for P constant,

p a =1 pT (C-30)

or
T T IT\ \T T T

p a a oa 0 a 0

Pa T T a(T 0)T T aA T

From the energy equation
.!p 11

T + U T2C 0

or

T1 4 a7Vk\ To =T (C-32)2C T Toa T O
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Defining the free stream Crocco number squared as
j U 2

C 2 
a I

a 2C T
p oa

U
u%-
a

T + C 0 2 2 T = To (C-33)
'-a oa o

at "a, It

T + C'T ~T
a a oa oa

Therefore,

a 1 - Ca2  (C-34)

oa

at any (p,

T T /T\
0 1 + C 24)2 oa

T a T 

T Ca 2)]

TT A

A C22 )  (C-35)
T (a -042

Therefore, from equations (C-31), (C-34) , and (C-35),

p1 A
Ca2)( -C 2) (C-36)

a

C aa 2)
A 2 A 27(C-37)

aa
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7. DcfinId Integral Notation

'The integral notation is dt.flncd by the following equations:

(A a d) IL1( )C-38)

cij 2 12) 13 a

T

2

. A+I1-A) 

l ,. Equation Summnary

Tihe equation to he solved for '1. is:
3

1 3Ra 00 c2 d 3 a) /Ra(( 2-40)

l a b a b a B)b a

or mi terms of the defined iStugrals, equatiory (C-38 and (C-39}

The relatioiuhip between ald I f, i ) is )

-) rb (A -c b a - b(A a

44
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or in terms of the defined integral notation,

13 = AB 1 1 + (I - AB)I'

From equation (C-27), the energy transfer rate becomes

aie

-C a xpar-pU aT oa= [a3d A B I (C-42)

From equation (C-29), the entrained mass rate is

Q a g)XPU a L 7d)

9. d-Streamline Velocity Ratio

For the d-streamline, the recompression criterion yields a value of
the d-streamline Crocco number, Cd. The value of Cd' the adjacent free stream

data, and the state of the quiescent fluid can then be used to determine the
d-streamline velocity ratio <Pd. Thi.s is accomplished in the following way.

The definition of the velocity ratio is considered:

S- Ud/U (C-44)

or rearranging in terms of the corresponding Croeco numbers,

"d Tu / PIu- d od (C-45)
a N poa JT C T

The stagnation temperature ratio can be expressed from equation (C-16) as

T od

T a Ad= AB+ (I- A1Od(C-46)

wiere

AB  a, BiToa
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T1 hetiflU hY 1woib iiu quatiuns (C-45) and (C-46) ,the expression to be
Solved totI iS-

% C- + A13) V2J (C-47)

S )lving for d, the reSUlt iS

Cm

nC (i A1 ) +f2 (i-A3) 2 + 41A } (C-4S)

where the ratio of the Crocco numbers has been defined as
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Appendix D

MIXING ANALYSIS: APPLICATION OF THE
TWO-DiMENSIONAL MIXING ANALYSIS TO THE

TWO-STREAM AXISYMMETRIC BASE-PRESSURE PROBLEM

The approximate two-stream flow nodel is shown in Figure D-1.

(I E) PBE
_____-___._ (x.

B .HC 
,-xi mp' Rimp

)

G TG EG I ! T E"X- '7
L B G1

aI "B.. - \t

U SHOCK\ /.,// " BI -

\( PBI CONTROL VOLUME
0 1)

FIGURE D-1. APPROXIMATE TWO-STREAM FLOW MODEL

1. Two-Dimcnsional Approximation of the Mass and Energy
Transfer Rates

Superposition of the two-dimensional mixing region on the "corre-
spotiding" inviscid flow field at the impingement point (Appendix C) of
Figure D-1 is shown.

a. External Stream

The approxim ate entrained mass tiow rate is deterinined from

equation (C-43) as

sEL G,,= 27TRin 1~p( 1 - CBE,) " j n 1 )- i~i) Ui
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I lic app(JI'iIvltc "Inng', I r:i1141-eilte is (!etergmjlted freoan equation (C-412 as:

(D-2)

lirt- re\
HE

b3. IIitCt!!LIJ Sti'tan,1

T1he *.iit cailit-1 mass floW rate is (equation C-43)

I ~ ~ ~ I (T 11 BIB 111 (11) ~ )

TIhe enerig) transfcr rate is (equation C2-42)

s

whe re A T1.

t'olisrvat ion of MIass

For the b:ise-rej-11 on IU0 rttOl eL1111, C0onser~'ationl Of mass requires
that

G0 0' -D 5

,I'he I erl 1. is a no s s lHow ra:teL enJtering- the hisc region at a negligil It vel ocity,

I. , m~ls eel . Ilv i utrodnet ion, as, a r'rneor the internal dream's

ri.' e I'I lisS- flow rate, G Nl'I' ~ il I-) :I J k'jtl l II121-o
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F"or the base region control volume, conservati on of ('ilergx' require(s
that

E 0+ (13-49)1

By use of the total enthalpy of the internal Amrain (nozzle flow) as a refereneL,

NI Nl C T~ o, (cl-B)

equation 1D-8) can be written iii dinsionless form a.,

E- E 0 (D1-l)
0

where

01C (D3-12)

Thus for conservation of m1ass anid energy in the base region, equations (D3-6)
and (13-11) miust be sinulItanecous ly satisfied.

4, Nozzle Mass Flow latu, 1 N

Figure D-2 presents the ideal nozzles anld their notation.

Fo r s ource flow through the conical nozzle (Figure l)-2 a) the flowj Mach number is a conistant over the nozzle's exit. area and the velocity- vectoir is
-7-- always perpendiculIar to this a rea. 'The exit flowv a rea is cqunl to (lie '(MI of' the

Yone Of a, sphere7 Of radius It N, The exit area is found as.

Ilk
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EXITT THROAT}) EXITEXIT

a. CONICAL-FLOW NOZZLE b. UNIFORM*rLOW NOZZLE

1'1iIME D-2. IDEAL NOZZIS AND TIHEM1 NOTATION

ItN  It 1h/8in (D-14)

N /2

Z R IN(1 - cos /4) (D-15)
Nj

Ac 2rNZ (1 + Cos )'D-n

lor the uniform flAw nozzle (ligxue D-2b) the exit flow area is given

A = (D-17)
e I

Thus, tor either conical (13 > 0) or uniform (j) 0) flows, the nozzle exit flow

area is given by

A 2 2)
C 1 + cos b') i(

If the low is uniform and one dimensional over the nozzle exit flow area, I
the idea I ozZ1'.I mass flow rate is given by

N lJ I M 1 1 +!

P A = 11 A1 ' (D-I-t)

5.1
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v hre

I = gai constant (Ibf-ftitbm-°R)

All = exit flow area, equation (D--14) ( 2)

P = exit pressure (lbf/L )

T' stagnation temperature ("10

ge = 32. 174 (Ibm-ft/lbf-scc2)

G mass flow rate (ibnVscv)

if
IfI 2 ] -2U

F(MIy) M / 4 M2 (D-20)

then

GNI = PIIA I o"--10""

The function F (M, ') can be exprcssed in terms of M" as

~ 1 1-j

• F r 2y I1 [ "- M ,:'  ,-22)>

or the nozzle mass flow rate becolmes

NI I ,H+IC-0S5] I - I F(A~'l,y) .(D-23)

For uniform flow, (3 = 0, and conical flow (3 > U.

5. The Quantity (pU)

A For an ideal gas,

p- P(D-24)

55T



VI
thcun the mas ilow taLt, p't unit area 19:

uI- p o u_. (D-)
(v;tB) -- jifT U- 4  2T C (D-5)

0 p

By definition of the Crooco number,

C l" / = U/ueax  (D-26)

From the energy equation,

U
2

'].' +-~ = , (D-27)
2C 

(D

p

the temperature ratio is found in terms of the Crocco number as

o_ (1 C 2) -  (D-28)
T

Rearranging equation (1-25) and substituting equation (D-20),

L

(P U) = rU J (D-29)17uo L--la-JT c,

or combinng equations (D-28) and (D-29),

P C(pU) = L- ] c) (D-au)

But

C-C IR or C - R

p,- 2 U' - C

(jT) : ,- v - iJ (1 - ) (D-31)

5t
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For IR in units of (lbf-ft/Ibm-R), (pU) is given by

F2,/ g I/2
((-C (D-32)G ! To LY - (1 C2)

where in equation (D-32)

p (1bnVft3)

U (ft/sec)

P (Ibf/L 2)

T (OR)
0

]R (Ibf-ft/lbmn-RI) .

9c (lbf-ft/lb-sec)

U. Dimensionless Bleed Ratio, B

The dimensionless bleed ratio [equation (D-8)] is

B BNI (D-8)

By substitution of equations (D-i), (D-3), (D-23), and (D-32) into equation
(D-8) and by using the condition that P = 1], the result is

R imp nB (I+siol 1 2 1 Cio E
(lcoBi 1 =___ItB__'(l

M]
+ 1 g- 1IT0 / T (D-3:3)

UT E I It T oE 11 (E - ) BE OdE) i-

7. Dimensionless Energy Ratio,E

The dimensionless energy ratio tequation (D-13)] is

= (EE + E/E (D.-13)

57
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It I + V
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Sillplifud ormsof (3,h

l'1d I ro e q iatio s -4 (D)- :35) 1 (1)- 3 ) th a d )-8 i tc'i i us iliirig

transfer ratio becolues

-E a, {CBi H ("dl) -A 131i1 ~' -,1 C H3 (k, L) A BlL 1,('il)] l
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